Fractional Quantum Field Theory, Path Integral, and Stochastic Differential Equation for Strongly Interacting Many-Particle Systems
نویسنده
چکیده
While free and weakly interacting particles are well described by a second-quantized nonlinear Schrödinger field, or relativistic versions of it, with various approximations, the fields of strongly interacting particles are governed by effective actions, whose quadratic terms are extremized by fractional wave equations. Their particle orbits perform universal Lévy walks rather than Gaussian random walks with perturbations.
منابع مشابه
Dynamics of interacting particle systems : stochastic process and field theory
We present an approach to the dynamics of interacting particle systems, which allows to derive path integral formulas from purely stochastic considerations. We show that the resulting field theory is a dual version of the standard theory of Doi and Peliti. This clarify both the origin of the Cole-Hopf map between the two approaches and the occurence of imaginary noises in effective Langevin equ...
متن کاملField Theoretic Methods
1 Summary. Many complex systems are characterized by intriguing spatio-temporal structures. Their mathematical description relies on the analysis of appropriate correlation functions. Functional integral techniques provide a unifying formalism that facilitates the computation of such correlation functions and moments, and furthermore allows a systematic development of perturbation expansions an...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Renormalization Group: Applications in Statistical Physics
These notes aim to provide a concise pedagogical introduction to some important applications of the renormalization group in statistical physics. After briefly reviewing the scaling approach and Ginzburg–Landau theory for critical phenomena near continuous phase transitions in thermal equilibrium, Wilson’s momentum shell renormalization group method is presented, and the critical exponents for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012